definicio

En acústica y telecomunicaciones, un armónico de una onda es un componente sinusoidal de una señal. Su frecuencia es un múltiplo de la fundamental. La amplitud de los armónicos más altos es mucho menor que la amplitud de la onda fundamental y tiende a cero; por este motivo los armónicos por encima del quinto o sexto generalmente son inaudibles. El concepto y la existencia de armónicos tiene su fundamento matemático en la teoría de las series de Fourier.

A partir del quinto armónico, todos los siguientes armónicos impares suenan ligeramente desafinados con respecto al temperamento justo

##

El primer sonido de la serie, o sonido fundamental, tiene una frecuencia que coincide con la de la nota cuya altura se percibe. El resto de los sonidos se añaden a éste sin alterar su altura aparente, pues el oído funde o integra todos los armónicos en una sola sensación.

El segundo sonido de la serie tiene una frecuencia doble de la del primero. Su altura es una octava por encima de aquél.

El tercer sonido tiene una frecuencia triple de la del primero, y está en una proporción de 3 a 2 con la del segundo; su altura es una quinta justa por encima de éste, y una doceava (intervalo compuesto por una octava más una quinta) por encima del primero.

El cuarto sonido tiene una frecuencia doble de la del segundo; su altura será una octava por encima de éste, y por tanto serán dos octavas por encima del fundamental. Cada vez que el número de orden (o índice) de un armónico es doble, su altura estará siempre una octava por encima.

Si bien el intervalo de octava está bien representado en el pentagrama, pues es una proporción fija de 2 a 1, con la quinta justa y otros intervalos (como veremos más adelante) no sucede lo mismo, pues existen diversos tipos de quinta, cuyas diferencias la notación convencional no tiene en cuenta en absoluto. Las alteraciones clásicas como el bemol y el sostenido no son adecuadas para expresar las pequeñas diferencias o comas entre intervalos equivalentes en el sentido del lenguaje musical.

El sonido número cinco se encuentra una tercera mayor por encima del sonido número cuatro. De acuerdo con lo expresado en el párrafo anterior, la tercera mayor que hay entre los sonidos 4 y 5 de la serie armónica es apreciablemente más pequeña que la tercera mayor del sistema temperado, y esta diferencia no queda reflejada en la notación convencional basada en un pentagrama.

Otro tanto ocurre con los sonidos 5 y 6 cuya distancia es de una tercera menor: se trata de un intervalo relativamente grande cuando se compara con la tercera menor del sistema temperado o del sistema de Pitágoras. El sonido 6 tiene un índice doble del 3 y está una octava sobre él; también forma una proporción 3:2 sobre el sonido 4, y por tanto está a una distancia de quinta sobre él.

El sonido número 7 era rechazado por Zarlino como válido para construir intervalos. De hecho, su altura no puede representarse con la suficiente aproximación en el pentagrama. Su separación con el sonido número 6 podría considerarse una tercera menor muy pequeña, y con el sonido 8 formaría una segunda mayor muy grande.

El sonido 8 tiene un índice doble del 4 y su sonido correspondiente estará (una vez más) una octava por encima de éste.

Los sonidos 8, 9 y 10 dejan entre sí dos intervalos sucesivos de segunda mayor de distinta amplitud (pues no es lo mismo 9/8 que 10/9). El tono que hay entre los sonidos 8 y 9 es un “tono grande” y el que hay entre los sonidos 9 y 10 es un “tono pequeño”.

De forma similar a lo que ocurre con el sonido 7 de la serie, el número 11 no tiene una representación adecuada en el pentagrama. Su intervalo desde el sonido 10 sería un tono muy reducido.

El sonido 12 es doble del 6 y forma una octava con él. También está en la proporción 3:2 sobre el sonido 8 y está a una distancia de quinta sobre él.

La representación en el pentagrama del sonido 13 sufre el mismo problema que el 11 y el 7.

El sonido 14 no escapa a la peculiaridad ya mencionada para el sonido 7, pero podemos asegurar que forma una octava por encima de éste por ser doble su índice.

El sonido 15 está en proporción de 3 a 2 con el 10, lo que lo sitúa a una quinta sobre él.

El sonido 16 es, de acuerdo con la misma lógica aplicada hasta ahora, un sonido situado una octava por encima del 8 y cuatro octavas por encima de la fundamental. El intervalo que lo separa del sonido 15 es una segunda menor o semitono diatónico. Este semitono es grande comparado con el semitono temperado; tengamos en cuenta que la tercera mayor entre los sonidos 15 y 12 es igual a la que hay entre los sonidos 5 y 4 (es por tanto una tercera mayor pequeña). Siendo la cuarta entre el 12 y el 16 de una medida muy similar a la cuarta temperada, no es extraño que el semitono que resulta de la diferencia entre la cuarta y la tercera mayor, sea más grande cuando la tercera mayor es más pequeña, y viceversa. Esta segunda menor “grande” es la que los intérpretes que afinan por el sistema justo aplican para la interpretación de la música antigua.

Un estudio simplificado de la serie armónica puede terminar en el armónico 16, pero debe tenerse en cuenta que, en teoría, la serie se extiende hasta el infinito y que no es extraño encontrar, en el análisis de sonidos reales, 30 o 40 armónicos. A partir del sonido 16, el intervalo entre dos sonidos sucesivos es menor de un semitono. Por lo general, la contribución de un armónico a la receta de un timbre es menor cuanto más elevado es su número de orden, por lo que un filtrado de las componentes más agudas puede tener una influencia despreciable en el timbre a partir de un cierto armónico.

##Nº de Armónico Frecuencia Nota Intervalo 1º armónico 66 Hz do1 tono fundamental (el primer do a la izquierda del piano) 2º armónico 132 Hz do2 octava 3º armónico 198 Hz sol2 quinta 4º armónico 264Hz do3 octava 5º armónico 330 Hz mi3 tercera mayor 6º armónico 396 Hz sol3 quinta, una octava sobre el 3º 7º armónico 462 Hz sib3 séptima menor (muy desafinada) 8º armónico 528 Hz do4 octava 9º armónico 594 Hz re4 segunda mayor, una quinta sobre el 6º 10º armónico 660 Hz mi4 tercera mayor, octava del 5º 11º armónico 726 Hz fa#4 cuarta aumentada 12º armónico 792 Hz sol4 quinta justa, una octava sobre el 6º 13º armónico 858 Hz la4 sexta mayor (muy desafinada) 14º armónico 924 Hz sib4 séptima menor (muy desafinada, igual que el 7º) 15º armónico 990 Hz si4 séptima mayor, una quinta sobre el 10º 16º armónico 1056 Hz do5 octava

##caracteristicas Los sonidos números 2, 4, 8 y todos los que forman una relación igual a una potencia de 2 con la fundamental, refuerzan el carácter inequívoco de la sensación de altura del conjunto.

Los sonidos 3, 6, 12 y todos aquellos que forman con el 3 una relación que es una potencia de 2, aportan un timbre nasal al conjunto.

Los sonidos 5 y 10 producen un timbre o color “redondo”, “profundo”, “cálido” y otros adjetivos semejantes.

Los sonidos 7, 11, 13 y 15 son disonantes y dan un carácter “áspero” al sonido.

Al crecer el número de orden de un armónico, su aportación es de más brillantez o claridad; más brillantez que claridad si es un número múltiplo de los 16 primeros excepto los que hemos denominado como disonantes.

Mysterium cosmographicum (1596)

Kepler expuso en esta obra su teoría de que cada planeta produce un tono musical durante su movimiento de revolución alrededor del Sol y que la frecuencia del tono varía con la velocidad angular de los planetas medidas con respecto al Sol. Algunos planetas producen notas musicales constantes, por ejemplo la Tierra solo varía un semitono con una proporción de 16:15 o equivalentemente la diferencia entre una nota mi y un fa entre su afelio y su perihelio y Venus varía en un intervalo más reducido de 25:24. Kepler explica su razonamiento para deducir el reducido lapso de tonos propio de cada planeta en términos esotéricos

Johannes Kepler, en su Mysterium cosmographicum (1596), pone en relación los aspectos de los que hablan los astrólogos (relaciones angulares entre planetas) y los intervalos musicales. La oposición (planetas a 180°): razón del círculo entero a su mitad: 2:1 (octava); el trigono (planetas a 120°): razón del conjunto a la menor de las partes: 3:2 (quinta); el cuadrado (planetas a 90°): razón del conjunto a la mayor de las partes: 4:3 (cuarta). Sobre todo, en su Harmonices mundi (1619), Kepler funda la «música celeste», ya no basado en las distancias entre planetas sino en la velocidad de los mismos, en función de la segunda ley de Kepler (ley de las áreas: la velocidad de un planeta aumenta cuando este se acerca al Sol). El planeta más lejano al Sol, Saturno, durante el afelio, cubre cada día 106 segundos de arco de elipse; en el perihelio, 135; esto equivale (a menos de 2 segundos) a una razón de 4 a 5, que es la tercera mayor. Júpiter da la tercera menor, Marte la quinta, la Tierra el semitono, Venus el sostenido y Mercurio la octava aumentada de la tercera menor. Kepler supone que el tono de Saturno en el afelio es la nota «sol», en su perihelio la nota «si». El conjunto de los planetas constituye un coro en que los bajos corresponden a Saturno y Júpiter, el tenor a Marte, el contralto a la Tierra y Venus, el soprano a Mercurio

LEYES DE KEPLER

tercera ley, que indica que el cubo de la distancia promedio del planeta al Sol es proporcional al cuadrado de su periodo orbital